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Abstract

The paper is dedicated to mathematical analysis of the idealized model of a string moving at a variable speed. Resonance

case is studied and it is shown that an infinite system of equations cannot be reduced. Some exact solutions are obtained.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamics of a conveyor belt moving with a time-varying velocity, where the belt is modeled through a
string, is analyzed in Refs. [1–4]. It is worth noting that the described approach is suitable for modeling of low
system’s frequencies (low modes). However, in order to consider higher modes properly, the bending belt
stiffness should be accounted [2]. Notice that although the introduced and discussed string model presented in
Ref. [1] does not represent real behavior for the higher order modes, it does represent this behavior for lower
order modes.

The stated problem is mathematically interesting and it will be further studied in this report following the
steps introduced in Ref. [1]. Since the bending conveyor belt stiffness is of zero value, the corresponding object
is further referred to as a mathematical string (MS).

2. Formulation of the problem

Here we follow steps introduced in Ref. [1]. Let MS move in x direction (Fig. 1) at velocity V(t).
Differentiation of the displacement U(x, t) yields the following formula:

dU

dt
¼

qU

qt
þ

qU

qx

dx

dt
¼ Ut þ V ðtÞUx,

and one more differentiation gives

d2U

dt2
¼ Utt þ 2VUxt þ V2Uxx þ V tUx. (1)
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Movement of MS.
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MS motion is governed by the following equation:

TUxx ¼ r
d2U

dt2
, (2)

where T is the string tension and r is the mass density of the string; T and r are assumed to be constant.
Formulas (1) and (2) yield

c2Uxx ¼ Utt þ 2VUxt þ V2Uxx þ V tUx, (3)

where c ¼
ffiffiffiffiffiffiffiffiffi
T=r

p
is the wave speed.

Assume that the MS ends are fixed in the vertical direction, i.e.

U ¼ 0 for x ¼ 0;L. (4)

The following initial conditions are taken

U ¼ f ðxÞ; Ut ¼ jðxÞ for t ¼ 0. (5)

Assuming that the MS velocity V(t) is small in comparison to the sound velocity c, the following
approximation holds

V ðtÞ ¼ eðV 0 þ a sin otÞ,

where V 040, V 0X aj j, e51, V 0 is constant.
Finally, the MS motion is governed by the following equation

c2Uxx �Utt ¼ e½ao cosðotÞUx þ 2ðV0 þ a sin otÞUxt� þ e2ðV 0 þ a sin otÞ2Uxx. (6)

For the sake of simplicity, we strongly simplify Eq. (6), assuming c ¼ a ¼ V0 ¼ 1. Besides, in order to study
the simplest resonance case we take L ¼ p, o ¼ 1.

Below, the problem is reduced to investigation of the following equation

Uxx �Utt ¼ e½Ux cos tþ 2ð1þ sin tÞUxt� þ e2ð1þ sin tÞ2Uxx, (7)

U ¼ 0 for x ¼ 0;p. (8)

The following solution to Eq. (7) satisfying the boundary conditions (8) is applied

Uðx; tÞ ¼
X1
n¼1

UnðtÞ sin nx. (9)

Substituting Eq. (9) into Eq. (7) and splitting with respect to sin nx, the following system of coupled ODEs is
obtained:

d2Uk

dt2
þ k2Uk ¼ e

X 2n

2j þ 1
Un cos tþ 2ð1þ sin tÞ

dUn

dt

� �
þ e2ð1þ sin tÞ2k2Uk, (10)



ARTICLE IN PRESS
I.V. Andrianov, J. Awrejcewicz / Journal of Sound and Vibration 292 (2006) 935–940 937
where X
¼

X
k¼n�2j�1

�
X

k¼2jþ1þn

�
X

k¼2jþ1�n

; k ¼ 1; 2; . . . .

In order to solve system (10) the multiple scale method is applied. Namely, introducing the variables t ¼ et
and t, we take Ukðt; eÞ ¼ Vkðt; t; eÞ and hence

dUk

dt
¼

qVk

qt
þ e

qV k

qt
,

d2Uk

dt2
¼

q2Vk

qt2
þ 2e

q2V k

qtqt
þ e2

q2V k

qt2
. ð11Þ

The functions Vkðt; t; eÞ are sought in the following form:

Vkðt; t; eÞ ¼ V
ð0Þ
k ðt; tÞ þ eV ð1Þk ðt; tÞ þ e2V ð2Þk ðt; tÞ þ . . . . (12)

After substitution of Eqs. (11) and (12) into Eq. (10), and after splitting with respect to e, the following
equations are obtained:

d2V
ð0Þ
k

dt2
þ k2V

ð0Þ
k ¼ 0, (13)

q2V
ð1Þ
k

qt2
þ k2V

ð1Þ
k ¼ �2

q2V ð0Þk

qt qt
þ
X 2n

2j þ 1
V
ð0Þ
k cos tþ 2ð1þ sin tÞ

q2V ð0Þk

qt2

" #
;

. . . . . . . . . . . . . . .

(14)

The solution of Eq. (13) reads

V
ð0Þ
k ¼ AkðtÞ cos ktþ BkðtÞ sin kt. (15)

Since functions AkðtÞ, BkðtÞ are defined through the lack of secular terms in Eq. (14), the following relations
are obtained:

dAk

dt
¼ ðk þ 1ÞBkþ1 þ ðk � 1ÞBk�1,

dBk

dt
¼ �ðk þ 1ÞAkþ1 � ðk � 1ÞAk�1. ð16Þ

Note that so far Eqs. (1)–(16) are taken from paper [1].

3. Analysis of infinite systems

Assuming the solution of system (16) in the form

AkðtÞ ¼ Cke
lt; BkðtÞ ¼ Dke

lt, (17)

where l, Ck, Dk are the constants, the following infinite system of linear algebraic equations is obtained:

lCk ¼ ðk þ 1ÞDkþ1 þ ðk � 1ÞDk�1,

lDk ¼ �ðk þ 1ÞCkþ1 � ðk � 1ÞCk�1; k ¼ 1; 2; . . . . ð18Þ

Consider first the case l ¼ 0, and hence the system (18) yields

D2k ¼ C2k ¼ 0,

D2kþ1 ¼ ð�1Þ
k D1

2k þ 1
,

C2kþ1 ¼ ð�1Þ
k C1

2k þ 1
; k ¼ 1; 2; . . . . ð19Þ
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Now let la0. The system (18) can be reduced to the following form:

lDk ¼ �ðk þ 1ÞCkþ1 � ðk � 1ÞCk�1, (20)

�l2Ck ¼ ðk � 1Þðk � 2ÞCk�2 þ 2k2Ck þ ðk þ 1Þðk þ 2ÞCkþ2. (21)

Observe that Eq. (21) can be studied separately for C2k and C2kþ1. Let us analyze Eq. (21) for C2kþ1, since
for C2k the results are analogous. For this case, the determinant of system (21) has the form:

1þ
l2

2
3 0 0 0 . . .

1

9
1þ

l2

2� 32
1
1

9
0 0 . . .

0
6

25
1þ

l2

2� 52
21

25
0 . . .

. . . . . . . . . . . . . . . . . .

���������������

���������������
¼ 0. (22)

Determinant (22) has a triple diagonal structure, and the terms on diagonals have the form

1

2
�

3

2k
þ

1

k2
; 1þ

l2

2k2
;

1

2
þ

3

2k
þ

1

k2
. (23)

Next, we are going to check if the infinite determinant (22) can be truncated. For this purpose the following
inequalities should be verified [5,6]. Notice that if both Koch’s conditions for reduction of infinite determinant
of the form:

X1
k¼1

akk � 1j jo1, (24)

X1
k¼1

X1
j¼1

akj

�� ��2o1; kaj, (25)

are satisfied, then the system can be truncated (akj are the determinant elements).
Although condition (24) is satisfied, condition (25) is not satisfied for determinant (22). In other words,

system (18) cannot be truncated. This result has been obtained in Ref. [1] on the basis of numerical
calculations.

4. Particular solution

Let us analyze relations (23). Note that a sum of terms in Eq. (23) is equal to 1þ ð2=k2
Þ, and for l2 ¼ 4 the

second term in Eq. (23) is equal to the sum of the first and third terms in Eq. (23) for any k.
Assuming

C2kþ1 ¼ ð�1Þ
kC1; k ¼ 1; 2; 3; . . . , (26)

and analogously

C2k ¼ ð�1Þ
k�1C2; k ¼ 2; 3; 4; . . . , (27)

instead of infinite systems of equations (18) one gets an infinite set of identical equations.
Thus, for two particular cases, l ¼ 0 and l2 ¼ 4, an infinite system of equations has a solution. This

observation enables construction of particular solutions for given initial conditions.
Namely, let us apply the initial conditions (5) in the following form:

U ¼ A
X

j¼1;3;5;...

ð�1Þðj�1Þ=2
1

j
cos jx; Ut ¼ 0; for t ¼ 0, (28)

where A is constant.
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Then, Dk ¼ 0, C2kþ1 ¼ Að�1Þkð1=2k þ 1Þ, and up to accuracy of e, one gets the following solution to
problem (7), (8) in the resonance case:

U ¼ A
X

j¼1;3;5;...

ð�1Þðj�1Þ=2
1

j
cos jt cos jx. (29)

The series (29) is convergent, and the solution (up to accuracy of e2 order) does not include the resonance
terms. The solution for non-resonance terms reads

U ¼ e
X1
j¼1

ðC
ð1Þ
j cos jtþD

ð1Þ
j sin jtÞ cos jx,

where C
ð1Þ
j , D

ð1Þ
j are certain coefficients.

Solution (29) can be improved to reach accuracy of e2, when the initial conditions (28) are modified, i.e.

U ¼ A
X

j¼1;3;5;...

ð�1Þðj�1Þ=2
cos jx

j
þ e
X1
j¼1

C
ð1Þ
j cos jx, (30)

Ut ¼ e
X1
j¼1

jD
ð1Þ
j cos jx. (31)

If the series (30), (31) are convergent, then the obtained solution has the accuracy of e2.
5. Why is the mathematical string model incorrect?

As it has been already shown, the considered mathematical string model yields rather strange results. It is,
however, clear from the mathematical point of view since this model is valid only for a few first modes. In
order to estimate a possible application domain of this model we take V ¼ 0 and we consider more general
beam model [1,2] governed by the following equations:

Utt � c2Uxx þ b2Uxxxx ¼ 0, (32)

U ¼ Uxx ¼ 0 for x ¼ 0;L. (33)

In the above b2
¼ EI=r; E is Young’s modulus, I is the moment of inertia with respect to the horizontal axis.

We are going to find the frequency of vibrations in the problem (32), (33) applying the formula

U ¼ Ceiot sin nx; n ¼ 1; 2; . . .

As a result one gets

o2 ¼ n2 c2 þ b2n2
� �

.

Note that the second term in brackets can be neglected when non� ¼ c=b.
The inequality non� defines the application interval of the string model. However, for n4n� the full

equation (5) should be studied.
The following main conclusion is drawn from this analysis. Namely, the string model represents the

asymptotic approximation of the full equation (5), and can be applied only for n� first vibration modes.
Furthermore, an application of the string-model for all vibration modes is wrong and does not have any
physical meaning.
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